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Abstract. Liquid can sustain shear waves up to a minimum wavenumber, indicating solid-like
behaviour over short length scales. With the increase of density this critical wavenumber decreases,
indicating a growth of a dynamic length scale. The speed of the propagating shear waves goes to
zero approaching a critical wavenumber. The maximum wavelength shows an initial enhancement
approaching the mode-coupling transition and finally grows at a slower rate as the sharp transition
is cut off. The growth of this dynamic length scale in the supercooled regime is studied using the
transverse correlation function and by computing the feedback effects of dynamic correlation in an
extended mode-coupling model where the structure factor of the liquid is used as an input.

The solid-like nature of a supercooled liquid is often expressed in terms of a finite shear
modulus. Thus while a low-density fluid cannot sustain a shear stress, in an elastic solid the
stress is proportional to the strain produced. The viscoelastic response of the supercooled
liquid is formulated in terms of the combination of the above two behaviours. Theories of
the liquid state which only include the short-time or uncorrelated collisions [1, 2] in a liquid
therefore do not account for the appearance of propagating shear waves. By formulating the
dynamics in a dense liquid in terms of the memory function [3–5], the propagating shear
waves at large wavenumbers are accounted for. The memory effects account for the dynamic
correlations that build up at high density and are expressed as mode-coupling terms. In recent
years, the self-consistent mode-coupling theory (MCT) [6] for glassy relaxation has been
proposed, considering the contribution to the transport coefficients coming from the nonlinear
coupling of collective modes in a liquid. In the kinetic approach to glassy behaviour, this widely
studied model is obtained from a self-consistent mode-coupling approximation of the memory
function in terms of the slowly decaying density fluctuations. This model undergoes a dynamic
transition to an ideal glassy phase beyond a critical density, while the structure of the liquid
does not undergo any drastic change. In the ideal glassy phase the density correlation function
freezes to a nonzero long-time limit. However, study of the equations of nonlinear fluctuating
hydrodynamics [7] shows that the dynamic feedback mechanism causing a divergence of the
viscosity is cut off as a result of the coupling of the density fluctuations to the current in a
compressible fluid. In these so-called extended mode-coupling models [7–10] it has been
shown that the dynamic transition is removed. The relaxation times keep increasing, but the
density correlation function finally decays to zero in the long-time limit. The ideal glassy phase
predicted within the simple mode-coupling approximation has solid-like properties and it can
support propagating shear waves at all length scales. In a recent work [11] the behaviour of
propagating shear waves in the supercooled liquid was analysed taking into account properly
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the structural effects at high density, through a mode-coupling calculation. The extent of
the slowing down in the relaxation near the instability is determined from the wave-vector
dependence of the mode-coupling contributions in the theory. It was shown that the longest
wavelength for the propagating shear waves that the undercooled liquid can sustain grows
with density. This length scale, which is linked to a characteristic solid-like behaviour of
the supercooled liquid, follows a power-law divergence with an exponent 1.2 in the vicinity
of the ideal glass transition density. In the present paper we consider the extended mode-
coupling model where there is no transition to an ideal glassy phase and the density correlation
that contributes to the mode-coupling effects decays to zero in the long-time limit. With the
proper approximation to the memory function essential for the dynamics of shear waves, the
divergence of the characteristic length scale is removed.

The shear relaxation in a fluid is studied by analysing the transverse autocorrelation
function. The nature of the dynamics is usually expressed in terms of the Laplace transform [12]
and the corresponding poles in the complex-z plane. The transverse autocorrelation function
φ(q, t) normalized with respect to its equal-time value can be expressed in the Laplace-
transformed form [12]

φ(�q, z) = 1

z + iηR(q, z)
(1)

in terms of the memory function or the generalized shear viscosity ηR(q, z). In the low-
density fluid, where the collisions are random, memory effects are negligible, giving an ηR

which is independent of frequency z. In this limit, φ(q, z) has a simple pole [12], signifying
a diffusive process. For the dense fluid at small enough length scales (i.e. large enough q),
the memory effects are important; a damped oscillatory mode called the shear wave [13,14] is
obtained. The dynamics of the transverse autocorrelation function is then expressed in terms
of the corresponding generalized shear viscosity [12] η(q, z) = η0 +ηmc(q, z), where η0 is the
short-time or bare part arising from uncorrelated binary collision of the fluid particles. The
mode-coupling contribution forηmc takes into account the cooperative effects in the dense fluids
and has contributions from the coupling of the hydrodynamic fields. In the supercooled liquid
the density fluctuations are assumed to be dominant and ηmc is expressed self-consistently in
terms of the density autocorrelation functions. In the formalism of the mode-coupling theories,
the density correlation function is the key quantity in terms of which the glassy relaxation is
formulated. The Laplace transform of the density correlation function ψ(�q, t) normalized
with respect to its equal-time value can be expressed in the form [7]

ψ(�q, z) = z + iR(q, z)

z2 −�2
q(q) + iR(q, z)[z + iγ (q, z)]

. (2)

�q = q/
√
βmS(q) corresponds to a characteristic microscopic frequency for the liquid-

state dynamics where β is the Boltzmann factor and m is the mass of the fluid particles.
The corresponding memory function, the generalized longitudinal viscosity R(q, z) =
0(q) + mc(q, z), has a part 0 related to bare or short-time dynamics with uncorrelated
collisions and the mode-coupling contribution mc signifying the correlated motion in the
dense liquid:

mc(q, t) =
∫
V L[�k, �k1]ψ(�k, t)ψ(�k1, t)

d�k
(2π)3

(3)

where �k1 = �q − �k. u = q̂ · k̂ is the dot product of the two corresponding unit vectors. The
vertex function for the longitudinal viscosity is given by

V L[�k, �k1] = n

2βm
[ukc(k) + u1k1c(k1)]

2S(k)S(k1) (4)
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where u1 = q̂ · k̂1 and c(k) is the direct correlation function related to the static structure factor
S(k) through the Ornstein–Zernike relation, S(k) = [1 − nc(k)]−1. The quantity γ (q, z) in
the R.H.S. of equation (2) plays a crucial role in determining the asymptotic dynamics. If
γ is ignored, the simple mode-coupling approximation for the memory function provides a
sharp transition to an ideal glassy phase beyond a critical density, with the density correlation
function developing a 1/z pole. This model has been widely studied [15] for the dynamics of
supercooled liquids and involves transition to an ideal glassy phase beyond a critical density.
However, with the presence of γ at high density whenR gets large, the pole shifts to 1/(z+γ ).
It has been demonstrated [7, 9] that, in the small-q, ω limit, γ ∼ q2. This gave rise to a
diffusive decay of the density correlation, restoring ergodicity in the long-time limit. The
formal expression for the quantity γ was obtained in reference [7] using nonperturbative
analysis. For the calculations here we use the one-loop results in the simplest form, in the
small-q, ω limit:

γ (q, t) = γ0q
2
∫

dk [ψ̇(k, t)S(k)]
2
. (5)

ψ̇ refers to the time derivative of the function ψ(q, t) and γ0 = v0
2/(6nσ 2π2), v0 being the

thermal velocity of the particles. The quantity γ provides a mechanism that cuts off the sharp
transition of the fluid to an ideal glassy phase. It is O(kBT ) to leading order, is an effect of
the coupling of the density and current correlations in the compressible fluid, and gives rise to
a diffusive process whereby complete freezing causes the dynamic correlations in the density
fluctuations to be smoothed.

We solve for the time evolution of the transverse correlation function φ(q, t) for q small,
with a self-consistent evaluation of the density correlation function ψ(�q, t) from equation
(2). It has been demonstrated [16] that in a simplified model where the quantity γ coming
from the coupling of currents to the density fluctuations is ignored, the density autocorrelation
function freezes [6] to a nonzero value for densities above a critical value nc. For a hard-
sphere system whose static structure factor is approximated with the Percus–Yevick [17] (PY)
solution with the Verlet–Weis (VW) [18] correction, this takes place at a critical value of the
packing fraction η∗ = 0.525 [19]. We focus our study here on the densities above the critical
density corresponding to the dynamic transition to the ideal glassy phase. At these densities
in the simple MCT there will be complete freezing at all length scales. The wave-vector-
dependent bare transport coefficients in the equations of motion for φ are relevant for the
short-time dynamics over different length scales, especially at short distances. In the present
calculation we use for the bare transport coefficients relevant for the short-time dynamics the
results obtained from hard-sphere models [20] with 0(x) and η0(x) respectively expressed as
[2/(3tE)][1 − j0(x) + 2j2(x)] and [2/(3tE)][1 − j0(x) − j2(x)], with x = qσ , which is the
wave vector q multiplied by the hard-sphere diameter σ . jl is the spherical Bessel function
of order l and tE the Enskog collision time [14]. To investigate the nature of the shear waves
at small wavenumbers, we compute the memory function in terms of the density correlation
function. In the present calculation the latter is obtained from the extended MCT computation
over a wide range of wave vectors, from small values up to a cut-off value. The extended
mode-coupling model that is used here does produce a form of the cut-off function in the
hydrodynamic limit. Indeed, for analysing the nature of the shear waves, the small-wave-
vector region becomes more important with increasing density. However, in computation of
the mode-coupling integrals, the large-wave-vector part contributes. For small wavenumbers,
as was indicated above, there is a diffusive mode restoring ergodicity. We choose the cut-off
function giving a diffusive pole by approximating γ (q, t) by the hydrodynamic limit given
in (5). We assume that the cut-off function is constant [21] beyond qσ = 0.015, around
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which value of qσ the structure factor, which is the only input in the present theory, reaches
within one per cent of its hydrodynamic limit. For the density range of interest here, we
use this as the cut-off value for using the hydrodynamic expression for γ . To compute the
transverse autocorrelation function for different wavenumbers, we use the standard form for
the mode-coupling contribution to the generalized shear viscosity or the memory function:

ηmc(q, t) = n

2βm

∫
d�k
(2π)3

[
c(k)− c( �k1)

]2
k2(1 − u2)ψ( �k1, t)ψ(�k, t). (6)

For small q, this gives up to quartic order

ηmc(q, t) = 1

βm

∫
[q2V

(0)
T + q4V

(2)
T + · · ·][ψ(�k, t)S(k)]2 dk

40π2
(7)

where the vertex functions VT are given by

V (0) = 2

3
k4c′2(k) V (2) = k2

7

[
4c′2(k) +

4

3
kc′(k)c′′(k) +

k2

2
c′′2(k)

]
.

We make detailed calculations of the transverse autocorrelation function for different values
of the wavenumber and study the nature of its relaxation with time. From the study of the
dynamics, a wavenumber q0 is identified such that with q > q0 the relaxation of the transverse
current correlation is oscillatory, indicating that the system sustains shear waves up to this
wavenumber. For wave vectors smaller than q0, the decay of the correlation function is no
longer oscillatory and φ never goes negative. In order to make a quantitative estimate of the
crossover wavenumber, we have adopted the procedure outlined for the calculation with the
simplified model [11], namely extrapolating to zero the inverse of the time t0 for which the
transverse autocorrelation function goes negative at a given wave vector q. We define a length
L0 = 2π/q0 corresponding to this critical value of the wavenumber for the shear wave which
corresponds to the maximum wavelength for propagating shear waves. See table 1.

Table 1. The length scale L0 in units of σ for different values of the packing fraction η.

η L0

0.50 47.38
0.51 73.19
0.52 97.55
0.53 146.18
0.54 213.25
0.55 324.56
0.56 497.19
0.57 744.72
0.58 826.05
0.59 1008.36
0.60 1275.07
0.61 1457.35
0.62 3145.26

In figure 1 the transverse autocorrelation function is shown for the packing fraction
η = 0.57. As the wavenumber is decreased, we see that the nature of the time relaxation
of the transverse correlation function changes from a propagating to an exponential decay.
Thus at a given density, as the critical wavenumber is approached, the propagating shear mode
transforms to a diffusive mode, reflecting the liquid-like behaviour. For q > q0 the speeds
of the propagating shear waves are computed from the decay of the time correlation function.
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Figure 1. The normalized transverse current–current correlation function φ(q, t) for qσ = 0.008
(solid), 0.010 (dashed), 0.012 (dot–dashed), and 0.015 (dotted), at η = 0.57.

In figure 2, we show the behaviour of the speed of the shear waves versus the wave vector
for the reduced density nσ 3 = 1.08. As the critical wavenumber is approached, the speed of
the shear waves goes to zero. For large wavenumber the speed of the shear wave reaches its
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Figure 2. The speed of the shear wave in units of σ/tE (see the text), versus kσ , at density
nσ 3 = 1.08.
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hydrodynamic value, which is equal to
√
G∞/ρ, whereG∞ is the high-frequency limit of the

shear modulus. Using this limiting value of the shear-wave speed we can thus compute the
shear modulus, and the result is shown in figure 3. This is related [5] to the short-time value of
the memory function. The only input in the present calculation comes from the structure of the
liquid. In figure 4 the variation of q0 with packing fraction η (=πnσ 3/6) is shown for a system
of hard spheres. As the critical packing fraction 0.525 is approached, the observed length scale
L0 tends to diverge, with q0 becoming small. However, as the density is further increased, the
approach to the sharp transition is cut off as a less substantial enhancement takes place.
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Figure 3. The shear modulusG∞ in units of (kBT )/σ 3 (on a log10 scale) versus packing fraction η.
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Figure 4. The wavenumber q0 (defined in the text) in units of σ−1 versus the packing fraction η.
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Indeed, the length scale L0 does not represent any underlying thermodynamic phase
transition, but indicates how the cooperative nature of the dynamics of the structural relaxation,
accounted for through the mode-coupling terms, grows with the density and is affected by the
dynamic instability of the ideal glass transition. Solid-like natures of undercooled liquids have
also been observed from the transverse sound modes [23]. Mountain has observed [24] a
similar behaviour of propagating shear waves from molecular dynamics simulations of fragile
liquids, which are also systems where the mode-coupling models apply. This length scale
of the maximum wavelength for propagating shear waves observed from molecular dynamics
simulations grows indefinitely approaching the glass transition. In the present work we have
demonstrated that for the self-consistent mode-coupling model, such a growing length scale can
be identified, and it shows a change in its growth pattern around the mode-coupling instability.
We have used expression (5) for small wave vectors by having a diffusive mode that comes out
of the collective dynamics at supercooled densities. While the small-q value of the quantity γ
has been obtained through a proper analysis of the NFH equations, we extrapolate this form
to large q using simple approximations to estimate it. The large-q behaviour should involve
the large-wave-vector extension of the mode-coupling formalism beyond the simple one-loop
approximation [10] to investigate the hopping motion in the supercooled liquid. The present
version of extended MCT uses the hydrodynamic form and is used to study the nature of
the shear waves at small wavenumbers. It has been established by independent works [7, 9]
that in the small-q limit, the final decay process restoring ergodic behaviour in the density
autocorrelation function is diffusive. Beyond the hydrodynamic regime, the central peak has
a width independent of q, commonly called the ‘Mountain peak’ [21] which is highly non-
Lorentzian, reflects faster processes, and does not play a crucial role here. The couplings to
thermal fluctuations are also ignored in the formulation, with the assumption that the density
fluctuations are the key quantity. We have also not taken into account coupling to other slow
modes that arises in the glass-forming liquids due to the complexity of molecules or properties
related to orientational degrees of freedom [25]. While there can be more involved formalisms
of the mode-coupling terms, the present work demonstrates that the simplest mode-coupling
terms with density fluctuations are crucial to understanding shear waves. Differences even
exist among the mode-coupling models for the supercooled liquid dynamics described in the
literature. At the level of the ideal transition model, they are the same as regards the form of
the vertex functions that appear in the theory, and thus one would expect a diverging length as
described in reference [11]. However, the form of the cut-off function that is finally responsible
for the absence of a sharp transition is not the same for all versions of the mode-coupling theory.
The kernel used for the computation for the density correlation functions used here is obtained
from the results obtained from references [7] and [9] which predicts a diffusive mode on the
longest timescale. In other versions of the extended mode-coupling theory, the sharp transition
is cut off through a cut-off function, though with a different wave-vector dependence. One
thus expects a removal of the divergence of the length scale in those models as well. Recently,
a length scale [26] was identified from a four-point time correlation function in fluids. This is
also related to the solid-like nature developing at supercooled densities. Since the solid-like
behaviour is finally related to the very long timescale that develops at the supercooled density,
we consider that the origin of the growth on these different dynamic length scales is in the end
related to that of the timescales.

In the viscoelastic theory in [27], a phenomenological parameter is introduced to describe
a frequency-dependent shear viscosity, and, using a simple exponential time dependence in
the transport coefficient, one can obtain propagating shear waves in terms of this relaxation
parameter. We have considered a theoretical model which is obtained from first principles. It
includes as input only the static structure factor of the liquid. The same model has already
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been used, by the present author, to investigate the nature of the supercooled liquid dynamics.
The growing length scale follows very naturally from the feedback of density fluctuations and
without any input parameters being used. We have used the extended mode-coupling model to
investigate the wave-vector dependence in the elastic response of the supercooled liquid. The
length scale L0 is related to the dynamic behaviour of the system and is representative of the
distance over which the supercooled liquid has enough structure to sustain propagating shear
waves.
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